

From the General Manager

We are proud to provide you with our 2020 Consumer Confidence Report (CCR). The annual water quality report covers all testing performed between January 1 and December 31, 2020. Our team of professionals has spent countless hours collecting samples, analyzing data, focusing on superior quality water, and adhering to our vision, "to serve customers, communities, employees, shareholders, and the environment at world-class levels." Our Mission, Vision, and Values bind us together to provide life-sustaining water for our customers, community, and each other.

detected at levels that vary throughout the year and at different locations. As a reminder, just because a substance is detected does not mean the water is unsafe. Natural waters, including the sources used by SJWTX, contain a wide range of natural substances; in fact, some of the minerals detected are essential for good health.

The water source is one of the primary factors that affect the levels of the substances reflected in this report. SJWTX supplies both groundwater and surface water to our customers. SJWTX supplies purchased surface water to customers in your system. Generally, groundwater is harder and contains more natural minerals than surface water. On the other hand, surface water typically contains small levels of natural organic substances and requires treatment by filtration. Regardless of the source, regulations require that we disinfect the water with chlorine and maintain a minimum level of chlorine residual throughout the distribution system.

This year your system participated in the Lead and Copper Program. The Lead and Copper Program protects public health by minimizing lead and copper levels in drinking water. This is primarily done through sampling, to help customers identify whether they may be at high risk for exposure. Sampling is conducted every three years, and the number of samples collected is based upon the population within the water system. In 2020, SJWTX collected ten samples throughout your system to test for lead and copper content in your drinking water. Determining the level of exposure helps SJWTX make decisions about updating the system and helps customers evaluate their plumbing. In the Test Results section, you can see the 90th percentile value of the most recent round of sampling.

Tip Top Tap

The most common signs that your faucet or sink is affecting the quality of your drinking water are discolored water, sink or faucet stains, a buildup of particles, unusual odors or tastes, and a reduced flow of water. The solutions to these problems may be in your hands.

Kitchen Sink and Drain

Hand washing, soap scum buildup, and the handling of raw meats and vegetables can contaminate your sink. Clogged drains can lead to unclean sinks and backed up water in which bacteria (i.e., pink- and black-colored slime growth) can grow and contaminate the sink area and faucet, causing a rotten egg odor. Disinfect and clean the sink and drain area regularly. Also, flush regularly with hot water.

Faucets, Screens, and Aerators

Chemicals and bacteria can splash and accumulate on the faucet screen and aerator, which are located on the tip of faucets, and can collect particles like sediment and minerals resulting in a decreased flow from the faucet. Clean and disinfect the aerators or screens on a regular basis.

Check with your plumber if you find particles in the faucet screen as they could be pieces of plastic from the hot water heater dip tube. Faucet gaskets can break down and cause black, oily slime. If you find this slime, replace the faucet gasket with a higher-quality product. White scaling or hard deposits on faucets and shower heads may be caused by hard water or water with high levels of calcium carbonate. Clean these fixtures with vinegar or use water softening to reduce the calcium carbonate levels for the hot water system.

Water Filtration/Treatment Devices

A smell of rotten eggs can be a sign of bacteria on the filters or in the treatment system. The system can also become clogged over time, so regular filter replacement is important. (Remember to replace your refrigerator filter!)

Quality First

As in years past, we are committed to delivering the best-quality drinking water possible. To that end, we remain vigilant in meeting the challenges of new regulations, source water protection, water conservation, and community outreach and education while continuing to serve the needs of all our water users. Thank you for allowing us the opportunity to serve you and your family.

We encourage you to share your thoughts with us on the information contained in this report. After all, well-informed customers are our best allies.

QUESTIONS?

For more information about this report, or for any questions relating to your drinking water, please contact Kristen Collier, Water Quality Specialist, at (830) 312-4600.

Contaminants in Source Water

To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small

amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it can acquire naturally occurring minerals, in some cases, radioactive material, and

substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and may also come from gas stations, urban stormwater runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on the taste, odor, or color of drinking water, please contact our business office, (830) 312-4600. For more information about contaminants and potential health effects, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Benefits of Chlorination

Disinfection, a chemical process used to control disease-causing microorganisms by killing or inactivating them, is unquestionably the most important step in drinking water treatment. By far the most common method of disinfection in North America is chlorination.

Before communities began routinely treating

drinking water with chlorine (starting with Chicago and Jersey City in 1908), cholera, typhoid fever, dysentery, and hepatitis A killed thousands of U.S. residents annually. Drinking water chlorination and filtration have helped to virtually eliminate these

diseases in the U.S. Significant strides in public health are directly linked to the adoption of drinking water chlorination. In fact, the filtration of drinking water plus the use of chlorine is probably the most significant public health advancement in human history.

How chlorination works:

We remain vigilant in

delivering the best-quality

drinking water

99

Potent Germicide Reduction in the level of many disease-causing microorganisms in drinking water to almost immeasurable levels.

Taste and Odor Reduction of many disagreeable tastes and odors like foul-smelling algae secretions, sulfides, and odors from decaying vegetation.

Biological Growth Elimination of slime bacteria, molds, and algae that commonly grow in water supply reservoirs, on the walls of water mains, and in storage tanks.

Chemical Removal of hydrogen sulfide (which has a rotten egg odor), ammonia, and other nitrogenous compounds that have unpleasant tastes and hinder disinfection. It also helps to remove iron and manganese from raw water.

Important Health Information

You may be more vulnerable than the general population to certain microbial contaminants, such as *Cryptosporidium*, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* are available from the Safe Drinking Water Hotline at (800) 426-4791.

Source Water Assessment

Deer Creek Water

TCEQ completed an assessment of your source water, and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sample data. Any detections of these contaminants will be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system, contact Kristen Collier, Water Quality Specialist, at (830) 312-4600.

SYSTEM SUSCE	EPTIBILITY SUMM	ARY								
ASBESTOS	CYANIDE	METALS	MICROBIAL	MINERALS	RADIOCHEMICAL	SYNTHETIC ORGANIC CHEMICALS	DISINFECTION BYPRODUCT	VOLATILE ORGANIC CHEMICALS	DRINKING WATER CONTAMINANT CANDIDATE	OTHER
		HIGH		HIGH						

West Travis County Public Utility Agency

TCEQ completed an assessment of your source water, and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sample data. Any detections of these contaminants will be found in this Consumer Confidence Report.

SYSTEM SUSCE	EPTIBILITY SUMM	ARY								
ASBESTOS	CYANIDE	METALS	MICROBIAL	MINERALS	RADIOCHEMICAL	SYNTHETIC ORGANIC CHEMICALS	DISINFECTION BYPRODUCT	VOLATILE ORGANIC CHEMICALS	DRINKING WATER CONTAMINANT CANDIDATE	OTHER
LOW	MEDIUM	HIGH	MEDIUM	MEDIUM	MEDIUM	MEDIUM	HIGH	HIGH	MEDIUM	LOW

Where Does My Water Come From?

Deer Creek Water purchases water from West Travis County Public Utility Agency (WTCPUA), which provides purchased surface water from Lake Austin located in Austin, Texas. WTCPUA treats, stores, and delivers water to the Deer Creek Water system.

SOURCE NAME / LOCATION	SOURCE WATER	TYPE OF WATER	REPORT STATUS	TCEQ SOURCE ID
West Travis County Regional Water System	Lake Austin	Surface Water	Active	P2270049A

Further details about sources and source-water assessments are available in Drinking Water Watch at the following URL: https://dww2.tceq.texas.gov/DWW/

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at www.epa.gov/safewater/lead.

Water Main Flushing

Distribution mains (pipes) convey water to homes, businesses, and hydrants in your neighborhood. The water entering distribution mains is of very high quality; however, water quality can deteriorate in areas of the distribution mains over time. Water main flushing is the process of cleaning the interior of water distribution mains by sending a rapid flow of water through the mains.

Flushing maintains water quality in several ways. For example, flushing removes sediments like iron and manganese. Although iron and manganese do not themselves pose health concerns, they can affect the taste, clarity, and color of the water. Additionally, sediments can shield microorganisms from the disinfecting power of chlorine, contributing to the growth of microorganisms within distribution mains. Flushing helps remove stale water and ensures the presence of fresh water with sufficient dissolved oxygen and disinfectant levels, and an acceptable taste and smell.

During flushing operations in your neighborhood, some short-term deterioration of water quality, though uncommon, is possible. You should avoid tap water for household uses at such times. If you do use the tap, allow your cold water to run for a few minutes at full velocity before use, and avoid using hot water, to prevent sediment accumulation in your hot water tank.

Please contact us if you have any questions or if you would like more information on our water main flushing schedule.

Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule. Also, the water we deliver must meet specific health standards. Here, we show only those substances that were detected in our water. (A complete list of all our analytical results is available upon request.) Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

For each substance listed, compare the value in the Highest Amount Detected column against the value in the MCL (or AL, SCL) column. If the Highest Amount Detected value is smaller, your water meets the health and safety standards set for the substance. If there was a violation, you will see a detailed description of the event in this report.

The state recommends monitoring for certain substances less often than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

The Range column displays the lowest and highest sample readings. If the lowest sample reading and the highest sample reading are the same, that means that only a single sample was taken to test for the substance (assuming there is a reported value in the Amount Detected column).

If there is a 0, that means multiple samples were taken but the substance was not detected (i.e., below the detectable limits of the testing equipment).

If there is sufficient evidence to indicate from where the substance originates, it will be listed under Typical Source.

REGULATED SUBS	TANCES																
							Deer Cr	eek Water	West Travi	s County PUA							
SUBSTANCE (UNIT OF MEASURE)			EAR MPLED	MCL [MRDL]		ICLG RDLG]	HIGHEST AMOUNT DETECTED	RANGE LOW-HIGH	HIGHEST AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE					
Barium (ppm)		2	2020	2		2	NA	NA	0.065	0.065–0.065	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits					
Chloramines (ppm)		2	2020	[4]		[4]	1.63 ¹	0.80-2.40	NA	NA	No	Water additive used to control microbes					
Cyanide (ppb)		2	2020	200		200	NA	NA	70	70–70	No	Discharge from steel/metal factories; Discharge from plastic and fertilizer factories					
Fluoride (ppm)		2	2020	4		4	NA	NA	0.2	0.2–0.2	No	Erosion of natural deposits; Water additive that promotes strong teeth; Discharge from fertilizer and aluminum factories					
Haloacetic Acids [H	AAs] ² (ppb)	2	2020	60		NA	18	10.4–16.5	NA	NA	No	By-product of drinking water disinfection					
Nitrate (ppm)		2	2020	10		10	0.23	0.23-0.23	0.2	0.2-0.2	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits					
TTHMs [Total Triha (ppb)	lomethanes] ²	2	2020	80		NA	42	24.7–38.9	NA	NA	No	By-product of drinking water disinfection					
Turbidity ³ (NTU)		2	2020	TT		NA	NA	NA	0.37	NA	No	Soil runoff					
Turbidity (Lowest mo		2	2020	TT = 95% of meet the l		NA	NA	NA	99	NA	No	Soil runoff					
Tap water samples were o	collected for lea	d and c	opper ana	lyses from sample	sites throughou	it the co	mmunity.										
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	MCLG	AMOUNT DETECTED (90TH %ILE)	SITES ABOVE AL/TOTAL SITES		ATION TYPI	CAL SOURCE									
Copper (ppm)	2020	1.3	1.3	0.266	0/10	1	No Ero	sion of natural	deposits; Lea	ching from wood	d preservative	s; Corrosion of household plumbing systems					
Lead (ppb)	2020	15	0	2.01	0/10	1		d services lines; osits	Corrosion of	f household plur	nbing systems	s including fittings and fixtures; Erosion of natural					

SECONDARY S	UBSTANC	ES							
				Deer Cree	k Water	West Travis C	ounty PUA		
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	SCL	MCLG	HIGHEST AMOUNT DETECTED	RANGE LOW-HIGH	HIGHEST AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Fluoride (ppm)	2020	2.0	NA	NA	NA	0.2	0.2-0.2	No	Erosion of natural deposits; Water additive that promotes strong teeth; Discharge from fertilizer and aluminum factories

ı	п	N	П	n	т		•	~	п	П	Λ		г	П	-	١.	-	c	п	-	т	n	п	v.	-		Α.	г	ч	7	т	-	•	71	м	г	п					Т	_	г	П.	/	•	А	1	А	-	ы	_	п	7	`	4.	
	ш	N	ч	ю	1	_	ш	н	ш		Δ	V		н	3	ייי		•	ш			к	ь	7	ш	L	Δ١	I۱	v	U	н	-	٠.		и	н	н	3	к		ı	ч	-	ь	к	١.	41	Λ	11	Δ	ч		-	к	•	ш		

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	HIGHEST AMOUNT DETECTED	RANGE LOW-HIGH	TYPICAL SOURCE
Bromochloroacetic Acid (ppb)	2020	8.3	5.3-8.3	Disinfection by-product
Bromodichloromethane (ppb)	2020	14.2	8.7–14.2	Disinfection by-product
Bromoform (ppb)	2020	3.1	2.5–3.1	Disinfection by-product
Chloroform (ppb)	2020	9	3.9–9	Disinfection by-product
Dibromoacetic Acid (ppb)	2020	5.6	4.1–5.6	Disinfection by-product
Dibromochloromethane (ppb)	2020	13.2	9–13.2	Disinfection by-product
Dichloroacetic Acid (ppb)	2020	7.9	4.6–7.9	Disinfection by-product
Trichloroacetic Acid (ppb)	2020	3	1.7–3	Disinfection by-product

- ¹The Highest Amount Detected for chloramines is calculated as an average.
- ²The value in the Highest Amount Detected column is the highest average of all sample results collected at a location over a year.
- ³Turbidity is a measure of the cloudiness of the water. It is monitored because it is a good indicator of the effectiveness of the filtration system.
- ⁴Unregulated contaminants are those for which the U.S. EPA has not established drinking water standards. The purpose of monitoring unregulated contaminants is to assist the EPA in determining their occurrence in drinking water and whether future regulation is warranted.

Water Loss Audit

In the water loss audit submitted to the Texas Water Development Board during the year covered by this report, our system lost an estimated 5,057,041 gallons of water. If you have any questions about the water loss audit, please call (830) 312-4600.

Definitions

90th %ile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections.

AL (Action Level): The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

NTU (**Nephelometric Turbidity Units**): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

SCL (Secondary Contaminant Level): These standards are developed to protect aesthetic qualities of drinking water and are not health based.

TT (**Treatment Technique**): A required process intended to reduce the level of a contaminant in drinking water.

About Our Violation

Monitoring Requirements Not Met for Deer Creek Water System

Our system failed to collect every required coliform sample. Although this incident was not an emergency, you have a right, as our customers, to know what happened and what we did (are doing) to correct this situation.

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During June 2020, SJWTX did not monitor or test for coliform bacteria and therefore cannot be sure of the quality of your drinking water during that time.

What should I do?

There is nothing you need to do at this time. You may continue to drink the water. If a situation arises where the water is no longer safe to drink, we are required to notify you within 24 hours.

What is being done?

SJWTX has collected all required sampling in the following months. All samples came back negative for coliform bacteria and E. coli. SJWTX has already taken the steps to ensure that adequate monitoring and reporting will be performed in the future so that this oversight will not be repeated.

For more information, please contact Kristen Collier at (830) 312-4600 or visit at 1399 Sattler Road, New Braunfels, TX.

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.

This notice is being sent to you by

Deer Creek Water System,

Public Water System ID#:TX2270049.

Date distributed: June 11, 2021

REVISED TOTAL COLIFROM RULE (RTCR)

The Revised Total Colifrom Rule (RTCR) seeks to prevent waterborne diseases cause by E. coli. E. coli are bacteria whose presence indictaed that the water may be contaminated with human or animal waste. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, and people with severly compromised immune systems.

VIOLATION TYPE	VIOLATION BEGIN	VIOLATION END	VIOLATION EXPLANATION	STEPS TAKEN TO CORRECT VIOLATION
MONITORING, ROUTINE, MAJOR (RTCR)	6/1/20	6/30/20	We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated.	Required sampling was completed in the following months, all of which came back negative for Total Coliform and E. coli.