ANNUAL WATER OUALITY REPORTING VEAD 2020

REPORTING YEAR 2020

esented By SJWTX— Canyon Lake Shores

From the General Manager

We are proud to provide you with our 2020 Consumer Confidence Report (CCR), which covers all testing performed between January 1 and December 31, 2020. Our team of professionals has spent countless hours collecting samples, analyzing data, focusing on superiorquality water and our vision, "to serve customers, communities, employees, shareholders, and the environment at world-class levels." Our mission, vision, and values bind us together to provide life-sustaining water for our customers, community, and each other.

As you review the data in the Test Results section, keep in mind that many substances are detected at levels that vary throughout the year and at different locations. As a reminder, just because a substance is detected does not mean the water is unsafe. Natural waters, including

the sources used by SJWTX, contain a wide range of natural substances; in fact, some of the minerals detected are essential for good health.

The water source is one of the primary factors that affect the levels of the substances reflected in this report. SJWTX supplies both groundwater and surface water to the customers in your system. As water percolates from the surface into the aquifer, it absorbs many of the minerals it comes into contact with. On the other hand, surface water typically contains small levels of natural organic substances and requires treatment by filtration. Regardless of the source, regulations require that we disinfect the water with chlorine and maintain a minimum level of chlorine residual throughout the distribution system.

In 1996 the Safe Drinking Water Act was amended to require that every five years, the U.S. EPA issue a list of no more than 30 unregulated contaminants to be monitored by public water systems under the Unregulated Contaminant Monitoring Rule. Sample collection under the fourth iteration of the program, Fourth Unregulated Contaminant Monitoring Rule (UCMR4), began in 2019 and was concluded in 2020. You will see any detected results of these contaminants located in the Test Results section of this CCR.

Tip Top Tap

The most common signs that your faucet or sink is affecting the quality of your drinking water are discolored water, sink or faucet stains, a buildup of particles, unusual odors or tastes, and a reduced flow of water. The solutions to these problems may be in your hands.

Kitchen Sink and Drain

Hand washing, soap scum buildup, and the handling of raw meats and vegetables can contaminate your sink. Clogged drains can lead to unclean sinks and backed up water in which bacteria (i.e., pink- and black-colored slime growth) can grow and contaminate the sink area and faucet, causing a rotten egg odor. Disinfect and clean the sink and drain area regularly. Also, flush regularly with hot water.

Faucets, Screens, and Aerators

Chemicals and bacteria can splash and accumulate on the faucet screen and aerator, which are located on the tip of faucets, and can collect particles like sediment and minerals resulting in a decreased flow from the faucet. Clean and disinfect the aerators or screens on a regular basis.

Check with your plumber if you find particles in the faucet screen as they could be pieces of plastic from the hot water heater dip tube. Faucet gaskets can break down and cause black, oily slime. If you find this slime, replace the faucet gasket with a higher-quality product. White scaling or hard deposits on faucets and shower heads may be caused by hard water or water with high levels of calcium carbonate. Clean these fixtures with vinegar or use water softening to reduce the calcium carbonate levels for the hot water system.

Water Filtration/Treatment Devices

A smell of rotten eggs can be a sign of bacteria on the filters or in the treatment system. The system can also become clogged over time, so regular filter replacement is important. (Remember to replace your refrigerator filter!)

Quality First

As in years past, we are committed to delivering the bestquality drinking water possible. To that end, we remain vigilant in meeting the challenges of new regulations, source water protection, water conservation, and

community outreach and education while continuing to serve the needs of all our water users. Thank you for allowing us the opportunity to serve you and your family.

We encourage you to share your thoughts with us on the information contained in this report. After all, well-informed customers are our best allies.

QUESTIONS?

For more information about this report, or for any questions relating to your drinking water, please contact Kristen Collier, Water Quality Specialist, at (830) 312-4600.

Contaminants in Source Water

To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants.

The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it can acquire naturally occurring minerals, in some cases radioactive material, and

substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and which may also come from gas stations, urban stormwater runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact our business office, (830) 312-4600. For more information about contaminants and potential health effects, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Benefits of Chlorination

Disinfection, a chemical process used to control disease-causing microorganisms by killing or inactivating them, is unquestionably the most important step in drinking water treatment. By far, the most common method of disinfection in North America is chlorination.

> Before communities began routinely treating drinking water with chlorine (starting with Chicago and Jersey City in 1908), cholera, typhoid fever, dysentery, and hepatitis A killed thousands of U.S. residents annually. Drinking water chlorination and

filtration have helped to virtually eliminate these diseases in the U.S. Significant strides in public health are directly linked to the adoption of drinking water chlorination. In fact, the filtration of drinking water plus the use of chlorine is probably the most significant public health advancement in human history.

How chlorination works:

"

We remain vigilant in

delivering the best-quality

drinking water

99

Potent Germicide Reduction in the level of many disease-causing microorganisms in drinking water to almost immeasurable levels.

Taste and Odor Reduction of many disagreeable tastes and odors like foul-smelling algae secretions, sulfides, and odors from decaying vegetation.

Biological Growth Elimination of slime bacteria, molds, and algae that commonly grow in water supply reservoirs, on the walls of water mains, and in storage tanks.

Chemical Removal of hydrogen sulfide (which has a rotten egg odor), ammonia, and other nitrogenous compounds that have unpleasant tastes and hinder disinfection. It also helps to remove iron and manganese from raw water.

Important Health Information

While your drinking water meets U.S. EPA's standard for arsenic, it does contain low levels of arsenic. U.S. EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. U.S. EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and linked to other health effects such as skin damage and circulatory problems.

You may be more vulnerable than the general population to certain microbial contaminants, such as *Cryptosporidium*, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* are available from the Safe Drinking Water Hotline at (800) 426-4791.

Source Water Assessment

The Texas Commission on Environmental Quality (TCEQ) completed an assessment of your source water, and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sample data. Any detections of these contaminants will be found in this report. For more information on source water assessments and protection efforts at our system, contact Kristen Collier, Water Quality Specialist, at (830) 312-4600.

SYSTEM SUSCEPTIBILITY SUMMARY											
ASBESTOS	CYANIDE	METALS	MICROBIAL	MINERALS	RADIOCHEMICAL	SYNTHETIC ORGANIC CHEMICALS	DISINFECTION BYPRODUCT	VOLATILE ORGANIC CHEMICALS	DRINKING WATER CONTAMINANT CANDIDATE	OTHER	
	MEDIUM	HIGH	MEDIUM	HIGH		HIGH	HIGH	HIGH	HIGH		

Where Does My Water Come From?

CLWSC Canyon Lake Shores provides surface water from Canyon Lake Reservoir, located in Canyon Lake, Texas, and groundwater from the Trinity Aquifer.

SOURCE NAME / LOCATION	SOURCE WATER	TYPE OF WATER	REPORT STATUS	TCEQ SOURCE ID	
Canyon Lake Island	Trinity Aquifer	Groundwater	Active	G0460019C	
Canyon Lake Shores Treatment Plant	Canyon Lake Reservoir	Surface Water	Active	S0460019A	
Hancock Oak Hills	Trinity Aquifer	Groundwater	Active	G0460019AX	
HEB Bulverde	Trinity Aquifer	Groundwater	Active	G0460019AD	
Hillcrest	Trinity Aquifer	Groundwater	Active	G0460019H	
Oakland Estates - Rancher's Circle	Trinity Aquifer	Groundwater	Active	G0460019AV	
Oakland Estates - White Brook	Trinity Aquifer	Groundwater	Active	G0460019AW	
Saddleridge	Trinity Aquifer	Groundwater	Active	G0460019BA	
Scenic Terrace	Trinity Aquifer	Groundwater	Active	G0460019F / G0460019G	
Stallion Springs	Trinity Aquifer	Groundwater	Active	G0460019AF	
Summit North	Trinity Aquifer	Groundwater	Active	G0460019BG	
Sybil Lightfoot Treatment Plant	Canyon Lake Reservoir	Surface Water	Active	S0460019B	
Tamarack	Trinity Aquifer	Groundwater	Active	G0460019E	
The Point	Trinity Aquifer	Groundwater	Active	G0460019I	
The Summit Estates at Fischer	Trinity Aquifer	Groundwater	Active	G0460019AY / G0460019AZ	

Further details about sources and source water assessments are available in Drinking Water Watch at https://dww2.tceq.texas.gov/DWW/.

Test Results

Our water is monitored for many different kinds of substances on a very strict Sampling schedule, and the water we deliver must meet specific health standards. Here, we only show those substances that were detected in our water (a complete list of all our analytical results is available upon request). Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

For each substance listed, compare the value in the Amount Detected column against the value in the MCL (or AL or SCL) column. If the Amount Detected value is smaller, your water meets the health and safety standards set for the substance. If there was a violation, you will see a detailed description of the event in this report.

The Range column displays the lowest and highest sample readings. If the lowest sample reading and the highest sample reading are the same, that means that only a single sample was taken to test for the substance, assuming there is a reported value in the Amount Detected column. If there is a 0, that means multiple samples were taken but the substance was not detected (i.e., below the detectable limits of the testing equipment).

If there is sufficient evidence to indicate from where the substance originates, it will be listed under Typical Source.

The state recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

The percentage of total organic carbon (TOC) removal was measured each month, and the system met all TOC removal requirements set.

We participated in the fourth stage of the U.S. EPA's Unregulated Contaminant Monitoring Rule (UCMR4) program by performing additional tests on our drinking water. UCMR4 sampling benefits the environment and public health by providing the U.S. EPA with data on the occurrence of contaminants suspected to be in drinking water in order to determine if U.S. EPA needs to introduce new regulatory standards to improve drinking water quality. Unregulated contaminant monitoring data are available to the public, so please feel free to contact us if you are interested in obtaining that information. If you would like more information on the U.S. EPA's Unregulated Contaminant Monitoring Rule, please call the Safe Drinking Water Hotline at (800) 426-4791.

REGULATED SUBSTANCES							
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG]	HIGHEST AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Arsenic (ppb)	2018	10	0	9.7	0–9.7	No	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes
Barium (ppm)	2020	2	2	0.0412	0.0266-0.0412	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Beta/Photon Emitters (pCi/L)	2020	50 ¹	0	4.6	4.6-4.6	No	Decay of natural and human-made deposits
Carbon Tetrachloride (ppb)	2016	5	0	0.5	0-0.5	No	Discharge from chemical plants and other industrial activities
Chlorine ² (ppm)	2020	[4]	[4]	1.5	0.3–2.5	No	Water additive used to control microbes
Chlorite (ppm)	2020	1	0.8	0.8	0-0.8	No	By-product of drinking water disinfection
Combined Radium (pCi/L)	2020	5	0	1.24	1.24–1.24	No	Erosion of natural deposits
Cyanide (ppb)	2017	200	200	20	0–20	No	Discharge from steel/metal factories; Discharge from plastic and fertilizer factories
Di(2-ethylhexyl) Phthalate (ppb)	2016	6	0	0.93	0–0.93	No	Discharge from rubber and chemical factories
Dichloromethane (ppb)	2018	5	0	1.1	0-1.1	No	Discharge from pharmaceutical and chemical factories
Ethylbenzene (ppb)	2018	700	700	0.5	0–0.5	No	Discharge from petroleum refineries
Fluoride (ppm)	2020	4	4	1.28	0.18–1.28	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Gross Alpha Particles [excluding radon and uranium] (pCi/L)	2020	15	0	5.1	5.1–5.1	No	Erosion of natural deposits
Haloacetic Acids [HAAs] ³ (ppb)	2020	60	NA	16	1.3–16.1	No	By-product of drinking water disinfection
Nitrate (ppm)	2020	10	10	1.52	0–1.52	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Selenium (ppb)	2019	50	50	3.4	0–3.4	No	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines
TTHMs [Total Trihalomethanes] ³ (ppb)	2020	80	NA	46	4.2–59.3	No	By-product of drinking water disinfection
Toluene (ppm)	2016	1	1	0.0009	0-0.0009	No	Discharge from petroleum factories
Turbidity ⁴ (NTU)	2020	TT	NA	0.32	0-0.32	No	Soil runoff
Turbidity (lowest monthly percent of samples meeting limit)	2020	TT = 95% of samples meet the limit	NA	98.8	NA	No	Soil runoff
Uranium (ppb)	2019	30	0	1	0-1	No	Erosion of natural deposits
Xylenes (ppm)	2020	10	10	0.0018	0-0.0018	No	Discharge from petroleum factories; Discharge from chemical factories

Tap water samples were collected for lead and copper analyses from sample sites throughout the community

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	MCLG	AMOUNT DETECTED (90TH %ILE)	SITES ABOVE AL/ TOTAL SITES	VIOLATION	TYPICAL SOURCE
Copper (ppm)	2019	1.3	1.3	0.116	0/30	No	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems
Lead (ppb)	2019	15	0	2	0/30	No	Corrosion of household plumbing systems; Erosion of natural deposits

SECONDARY SUBSTANCES										
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	SCL	MCLG	HIGHEST AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE			
Aluminum (ppb)	2020	200	NA	164	0–164	No	Erosion of natural deposits; Residual from some surface water treatment processes			
Chloride (ppm)	2020	300	NA	27	15–27	No	Runoff/leaching from natural deposits			
Fluoride (ppm)	2020	2.0	NA	1.28	0.18–1.28	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories			
Iron (ppb)	2020	300	NA	37	0–37	No	Leaching from natural deposits; Industrial wastes			
Manganese (ppb)	2020	50	NA	1.8	0–1.8	No	Leaching from natural deposits			
Sulfate (ppm)	2020	300	NA	66	22–66	No	Runoff/leaching from natural deposits; Industrial wastes			
Total Dissolved Solids [TDS] (ppm)	2020	1,000	NA	419	234–419	No	Runoff/leaching from natural deposits			
Zinc (ppm)	2020	5	NA	0.211	0-0.211	No	Runoff/leaching from natural deposits; Industrial wastes			

UNREGULATED SUBSTANCES ⁵

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	HIGHEST AMOUNT DETECTED	RANGE LOW-HIGH	TYPICAL SOURCE
Bromodichloromethane (ppb)	2020	18.6	0–18.6	Disinfection by-product
Bromoform (ppb)	2020	8.6	0–8.6	Disinfection by-product
Chloroform (ppb)	2020	14.5	0–14.5	Disinfection by-product
Dibromochloromethane (ppb)	2020	21.5	0–21.5	Disinfection by-product
Nickel (ppm)	2020	0.0019	0–0.0019	Discharge from petroleum and metal refineries; Erosion of natural deposits
Sodium (ppm)	2020	17.5	13–17.5	Erosion of natural deposits

Water Main Flushing

Distribution mains (pipes) convey water to homes, businesses, and hydrants in your neighborhood. The water entering distribution mains is of very high quality; however, water quality can deteriorate in areas of the distribution mains over time. Water main flushing is the process of cleaning the interior of water distribution mains by sending a rapid flow of water through the mains.

Flushing maintains water quality in several ways. For example, flushing removes sediments like iron and manganese. Although iron and manganese do not pose health concerns, they can affect the taste, clarity, and color of the water. Additionally, sediments can shield microorganisms from the disinfecting power of chlorine, contributing to the growth of microorganisms within distribution mains. Flushing helps remove stale water and ensures the presence of fresh water with sufficient dissolved oxygen, disinfectant levels, and an acceptable taste and smell.

During flushing operations in your neighborhood, some short-term deterioration of water quality, though uncommon, is possible. You should avoid tap water for household uses at that time. If you do use the tap, allow your cold water to run for a few minutes at full velocity before use, and avoid using hot water to prevent sediment accumulation in your hot water tank.

Please contact us if you have any questions or if you would like more information on our water main flushing schedule.

Definitions

90th %ile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections.

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. **NA:** Not applicable.

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

pCi/L (picocuries per liter): A measure of radioactivity.

ppb (**parts per billion**): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

SCL (Secondary Contaminant Level): These standards are developed to protect aesthetic qualities of drinking water and are not health based.

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.

µmho/cm (micromhos per centimeter): A unit expressing the amount of electrical conductivity of a solution.

OTHER UNREGULATED SUBSTANCES ⁵									
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	HIGHEST AMOUNT DETECTED	RANGE LOW-HIGH	TYPICAL SOURCE					
2-Butanone [MEK] (ppb)	2017	11	0-11	Produced in outdoor air by the photo-oxidation of certain air pollutants, such as hydrocarbons					
Acetone (ppb)	2017	12	0–12	Created during the natural living and growing processes of plants and animals					
Bicarbonate (ppm)	2020	359	167–359	Erosion of natural deposits					
Bromochloroacetic Acid (ppb)	2020	6.7	0–6.7	Disinfection by-product					
Calcium (ppm)	2020	63	38.1–63	Erosion of natural deposits					
Dibromoacetic Acid (ppb)	2020	6.4	1.3–6.4	Disinfection by-product					
Dichloroacetic Acid (ppb)	2020	8.5	0-8.5	Disinfection by-product					
Diluted Conductance (µmho/cm)	2020	790	426–790	Erosion of natural deposits					
Dimethyl phthalate (ppb)	2017	2.1	0–2.1	Discharge from plastic and chemical factories					
Gross Alpha Particles [including radon and uranium] (pCi/L)	2020	5.1	5.1–5.1	Erosion of natural deposits					
Hexadecanoic Acid (ppb)	2019	4	4-4	Breakdown of animal and plant lipids					
Magnesium (ppm)	2020	46.2	18-46.2	Erosion of natural deposits					
Monobromoacetic Acid (ppb)	2020	1.1	0–1.1	Disinfection by-product					
Monochloroacetic Acid (ppb)	2020	2	0–2	Disinfection by-product					
Octadecanoic Acid (ppb)	2019	3.9	3.9–3.9	Breakdown of animal and plant lipids					
Phthalic Anhydride (ppb)	2017	3.6	3.6–3.6	Formed as an artifact during gas chromatographic analysis					
Potassium (ppm)	2020	4.6	1.75–4.6	Erosion of natural deposits					
Radium-226 (pCi/L)	2020	1.24	1.24–1.24	Erosion of natural deposits					
Radium-228 (pCi/L)	2015	1.0	0–1.0	Erosion of natural deposits					
Tetrahydrofuran (ppb)	2018	344	0–344	Discharge from plastic and rubber factories					
Total Alkalinity [as CaCO3] (ppm)	2020	294	137–294	Erosion of natural deposits					
Total Hardness (ppm)	2020	338	169–338	Erosion of natural deposits					
Trichlorogetic Acid (pph)	2020	27	0.27	Disinfection by product					

UNREGULATED CONTAMINANT MONITORING RULE - PART 4 (UCMR4)

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	HIGHEST AMOUNT DETECTED	RANGE LOW-HIGH
Bromide (ppb)	2019	118	100-118
HAA5 (ppb)	2019	21	2.32–21
HAA6Br (ppb)	2019	31.8	7.2–31.8
HAA9 (ppb)	2019	41.7	7.72–41.7
Manganese (ppb)	2019	4.1	0.43-4.1
Total Organic Carbon [TOC] (ppb)	2019	2,870	1,540–2,870

- $^1\mbox{The MCL}$ for beta particles is 4 mrem/year. U.S. EPA considers 50 pCi/L to be the level of concern for beta particles.
- ²The highest amount detected is calculated as an average.
- ³The value in the Highest Amount Detected column is the highest average of all sample results collected at a location over a year.
- ⁴ Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration system and disinfectants.
- ⁵Unregulated contaminants are those for which the U.S. EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist U.S. EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

Water Loss Audit

In the water loss audit submitted to the Texas Water Development Board during the year covered by this report, our system lost an estimated 253,851,678 gallons of water. If you have any questions about the water loss audit, please call (830) 312-4600.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials

and components associated with service lines and home plumbing. This water supply is responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at www. epa.gov/safewater/lead.

SURFACE WATER MONITORING, ROUTINE MAJOR

The CLWSC CANYON LAKE SHORES, PWS ID TX0460019, has violated the monitoring and reporting requirements set by Texas Commission on Environmental Quality (TCEQ) in Title 30, Texas Administrative Code (30 TAC), Section 290, Subchapter F. Public water systems that treat surface water and/or ground water under the direct influence of surface water are required to submit monthly operating reports with operational data of the treatment, disinfection and quality of the water provided to their customers.

We failed to monitor and/or report the following constituents Chlorine Dioxide, Water Temperature, and pH

This/These violation(s) occurred in the monitoring period(s) February 2021

Results of regular monitoring are an indicator of whether or not your drinking water is safe. We did not complete all monitoring and/or reporting for surface water constituents, and therefore TCEQ cannot be sure of the safety of your drinking water during that time.

We are taking the following actions to address this issue:

In February of 2021, Texas was affected by Winter Storm Uri. The storm resulted in significant ice and snow accumulation. Due to the extreme weather, the Canyon Lake Shores Surface Water Treatment Plant (SWTP) was inaccessible. Although our facilities remained operational, the state of the roadways resulted in our operators being unable to access the plant to perform daily lab monitoring to be in compliance with Contact Time requirements on February 14, 2021. The Canyon Lake Shores SWTP is currently in compliance with all Contact Time monitoring and/or reporting requirements. All monitoring and/or reporting requirements at the Canyon Lake Shores SWTP, both before and after February 14, 2021, were completed. Due to TCEQ regulation, we are notifying our customers of this violation. SJWTX is diligently reviewing its Emergency Response Action Plan to ensure accessibility to treatment plants to be in compliance with monitoring and/or reporting requirements.

Please share this information with all people who drink this water, especially those who may not have received this notice directly (i.e., people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.

If you have questions regarding this matter, you may contact Kristen Collier at (830) 312-4600.

Posted/Deliver on: June 14, 2021

PO Box 1742 Canyon Lake, Texas 78133 830.312.4600 | sjwtx.org